The role of U2AF35 and U2AF65 in enhancer-dependent splicing.
نویسندگان
چکیده
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.
منابع مشابه
Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit.
U2 small nuclear ribonucleoprotein auxiliary factor (U2AF), an essential mammalian splicing factor, is composed of two subunits: a 65-kDa protein (U2AF65), which binds the pre-mRNA polypyrimidine tract and is required for in vitro splicing, and an associated 35-kDa protein (U2AF35). Here we report the isolation of a cDNA encoding U2AF35. U2AF35 contains sequence motifs found in several mammalia...
متن کاملA BBP–Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast
The 3' end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, aff...
متن کاملA Novel Peptide Recognition Mode Revealed by the X-Ray Structure of a Core U2AF35/U2AF65 Heterodimer
U2 auxiliary factor (U2AF) is an essential splicing factor that recognizes the 3' splice site and recruits the U2 snRNP to the branch point. The X-ray structure of the human core U2AF heterodimer, consisting of the U2AF35 central domain and a proline-rich region of U2AF65, has been determined at 2.2 A resolution. The structure reveals a novel protein-protein recognition strategy, in which an at...
متن کاملFas splicing regulation during early apoptosis is linked to caspase-mediated cleavage of U2AF65.
U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) re...
متن کاملTargeting of U2AF65 to Sites of Active Splicing in the Nucleus
U2AF65 is an essential splicing factor that promotes binding of U2 small nuclear (sn)RNP at the pre-mRNA branchpoint. Here we describe a novel monoclonal antibody that reacts specifically with U2AF65. Using this antibody, we show that U2AF65 is diffusely distributed in the nucleoplasm with additional concentration in nuclear speckles, which represent subnuclear compartments enriched in splicing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2001